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Abstract 

Recently, a method for  combined noncoherent detection and decoding of trellis-codes 
(noncoherent coded modulation) has been  proposed, which can  practically  approach the 
performance of coherent detection. Here, we successfully apply the technique to  the 
detection of Continuous  Phase  Modulation (CPM), coded or uncoded. Both full and 
partial response CPM schemes with arbitrary modulation index are considered. This 
method is based on multiple-symbol observations, such that  the observations  are time- 
overlapped. The results show that most CPM schemes require short observations to 
achieve almost the same power  efficiency as optimally  detected coherent CPM. Com- 
pared  to the previously proposed methods for noncoherent detection  that  can approach 
the coherent performance, the required observation length is  much shorter  and also the 
decoding complexity is  much  lower. A new trellis diagram for noncoherent CPM is sug- 
gested  for simplifying the analysis and  the decoder structure.  The error performance for 
uncoded CPM is evaluated by using the union bound technique applied  on the syrnbol- 
difference trellis diagram. For the coded  case a pair-state trellis is required. Very  efficient 
sub-optimal decoding algorithms with very small  degradation may implement  the non- 
coherent decoder. The performance achieved with these algorithlrls is demonstrated by 
simulations. 

*This paper was presented in part  at  the  1994 Communication Theory Mini Conference in conjunction with 
GlobeCom’94, Nov. 1994, San Francisco. This research was carried out in part  at  the Jet Propulsion Laboratory. 
California Institute of Technology. under a contract with NASA 



1 Introduction 

Cfo~lt~irluous l ’ h ~ ~  h/lodulation (CPibI) is ;L cliLSS of  const;int  e~lvclope  rllotlulation scherlles. 

CPkI can  have powcr and  bandwidth  eficioncy, so i t  is attractive scherrle to be used when- 

ever a nonlinear  channel is employed (requires  constant  amplitude  signal).  With  the  addition 

of an  encoder in front of the  modulator, even better  combinations of  power and  bandwidth 

efficiency are  possible. However, to enjoy these  benefits,  optimum  coherent  detection of CPM 

frequently  requires  complex receivers and difficult carrier  tracking.  Due  to  the  difficulty in 

achieving  coherency  in CPM  systems,  many  noncoherent receivers  were suggested in the lit- 

erature.  Here, we propose a new method for combined  noncoherent  detection  and  decoding 

of CPM which can  be  also used for coded CPM. 

Data  detection  and  carrier  phase  tracking,  as  two  separate  problems,  have  been  studied 

extensively  in  the  past.  Uncoded or coded CPM over the  Additive  White  Gaussian Noise 

(AWGN) channel  with  coherent  detection  can  be  optimally  decoded by the  Viterbi  Algorithm 

(VL4) [2]. The carrier  phase  tracking  can  be  performed by a Phase Locked Loop  (PLL). 

There  are  two ways to  implement  the  phase  tracking for CPM.  One  is  to remove the  data 

by a nonlinear  operation,  and  then lock to one  or  more of the  discrete  spectral  components 

produced [2]. The  other is to decode  the  data  and feed it back into  the  loop  (data  aided 

loop) [3]. If discrete  spectral  components  are  to  be  generated  from a CPM scheme  with R 

phase  states,  the  signal  has  to  be  raised  to  the  Rth power.  Since this  process  results in  a 

large  SNR  (Signal to Noise Ratio)  drop, very narrow  loops  must  be  employed. For the  data 

aided  loop,  the  large  decoding  delay  caused by the V-4 will only  allow the  operation of a  PLL 

with a large  time  constant  (narrow-band).  Some  improvement  can  be  potentially  gained by 

using  premature  decisions  from  the VA to reduce the delay [4]. Data aided  based  PLL  also 

have the  danger  that few erroneous decisions can  cause loss of lock.  A  narrow  band  PLL is 

usually  required,  but  such  a  PLL  cannot  be used for the cases where  fast  phase  variations i n  

the  channel  occur  due  to  phase noise or  Doppler  effects.  PLL’s  in  general cause problems like 

slow and difficult acquisition,  and delayed  recognition of loss of lock:  slow  recovery from fade. 

and false  lock. 

In many  cases, r1onc:oherent methods  arc  more  preferred  than  PLL’s  since the!. are more 
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rosist,;lrlt, to  fkliug. t,lley allow tjursL oper;Ltiou, ;LIltl t h ~ y  st,;Ln(l  llighc?r phase noise. Differential 

.-lnri Lirrlitc.r.-Disc:rirrlinat,or (LD) detectors i n  their basic forms, have a  minimum  degradation 

o f  about 3 d B  on AWGN relative to cohercrlt detection, arid this is only  for  certain  binary CPM 

schemes. For other, more powerful schemes, the  degradation is even higher.  Many  methods 

were used to improve  the  performance of these  detectors  including zero forcing  equalizer, 

decision  feedback,  error  correction and VA. A good  comparison is found  in [23] for  the case 

of MSK (Minimum  Shift  Keying).  The  best of these  schemes  provides 2 d B  degradation for 

MSK with LD and decision  feedback. 

It is useful to  compare  between  noncoherent  schemes  on  the  basis of the observation  length 

L in  symbols.  The  observation  length is the  length  the  channel  phase  can  be  assumed  constant, 

and is  inversely related  to  the  resistance of the scheme to phase  jitter.  In  addition,  in  many 

schemes the  complexity is exponential in L.  Makrakis [17] has  shown  degradation of 1.5 dB 

for Gaussian  Minimum  Shift  Keying (GWlSK) with BT, = 0.25 ( B  is the  3db  Bandwidth of 

the  shaping  filter  and T, is the  bit  duration), by combining 3 differential  detectors for delays 

of 1,2 and 3 symbols  and  using VA. Note that  the lower degradation  mentioned  in [17] is 

due  to  comparison  to  sub-optimal  coherent  detection of [26] instead of to  the  optimal.  The 

observation  length is  equivalent to 4 symbols.  Note that  their scheme  requires the  addition of 

a differential  encoder  in  front of Gi’vlSK. This  alone  causes  unrecoverable  degradation of 0.5 dB 

even if the  number of differential  detectors is  increased to infinity. I t  will be  interesting  to 

know the  performance of Makrakis  et  al.  method for other CPM schemes,  including  multilevel 

ones. 

Obsborne  and  Luntz [19], and  then  Aulin  et al. [20], [21] solves a noncoherent  hlLSE 

(Maximum  Likelihood  Sequence  Estimator) decision  on a block of L symbols,  but decides 

only  on  one  symbol. The  complexity is exponential in L,  but  there  exist a suboptimal version 

which uses the  Viterbi  algorithm. For most evaluated  schemes. L > 10 is required to approach 

coherent  performance.  Simon  et. al. [ N ] .  made  an ILILSE decision  on all L symbols. Leib 

et. al. [23] and  Abrardo  et al. [23] have recognized that  the  symbols  at  the edge of the 

block have a  higher  contribut,ion to  the  error  probability  and  ignore  them,  getting improved 

results.  In [23], the  degradation of noncoherent  detection of hISK is 1.4  dB for L = 8. In [25]. 
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clttgrachtiotl of i(ss t h a n  0.5 d B  is s h ~ w t l  with L = 7 for GMSK, BT = 0.5. This  compares 

to 1; = 4 i n  o11r schorne (see Figure 6) .  Harrold et. a l .  [ B ]  have suggested  another  scheme, 

based on the V.I\ idgorithm where a phase  estimation is made  from  the  best  survivor  and used 

as a  reference to  evaluating  a  partially  coherent  metric  on  an  observation.  In  their  scheme, 

L = 12-25 is required to be close within 0.5 dB  to  coherent  detection  with  various  partial 

response  schemes,  but  the  complexity is not  exponential  in L. There is  no data   to  compare 

to  for  noncoherent  decoding of coded CPM. 

Our scheme  outperforms  all of the above  noncoherent  schemes  in  terms of the required 

observation for achieving close to coherent  performance. L = 3 only  is  required for MSK, 

and L = 5-6 for good 4 level schemes  including  partial  response. For GMSK, BT = 0.25, in 

particular, [17] shows similar  performance,  but the  results for additional  CPM  types  should 

be  provided  for  comparison.  Note that reduced  complexity  algorithms  are  not  available for 

this  method. 

We apply  noncoherent  decoding  also to  coded  CPM.  Anderson at el. [7] considered con- 

volutionally  coded CPM. However, they used the unrealistic  assumption  that  the  phase is 

constant  forever.  Their  method  can  be used if for each  symbol  decision a large block  is  pro- 

cessed,  large  enough t o  contain  the  longest  probable  error  event.  This block  becomes  larger 

as  the SNR drops. A la.rge block means  a very large  observation  and  prohibitive  complexity. 

Poor  results  are  expected when applying  differential  detection  or LD to coded  CPM since 

the working point is a t  low symbol SNR. The previously  proposed MLSE methods  cannot  be 

applied  to  coded  CPhl,  unless  the  observations  do  not  overlap. In this  case worse performance 

is expected  as was demonstrated for uncoded  CPM,  and for coded BPSK  (Bipolar  Phase  Shift 

Keying) [ 11. 
Unlike the  previous  schemes  using  multiple-symbol  observations, the  method described  in 

this  paper uses fully overlapped  observations,  such that  the  observations  are  not  independent. 

In this way the  channel  phase  memory is used  in a much  more efficient way. This  method 

was first  used  for  nlultiple-symbol  overlapped observations of trellis  coded  PSK  modulation 

[l]. Here we apply  the  technique  to  CPM.  Since  CPM  has a trellis  structure,  many of the 

concepts i n  [l] and [SI can  be  applied  to  CPM.  In  addition,  the  sub-optimal  algorithms of [ S ]  
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i lavo remark;hly l o w  degradation when applied on CPM. 

Norlcoherent,l~  catastrophic (NC)[l] codes  are  those where there  csists  at least two se- 

cl~~ences which differ in a constant  phase  shift,  and  are  the  encoding of different  input.  CPM 

is clearly  not  NC.  Although  many  sequences which are a constant  phase  shift of another  exist, 

all of these  are  the  encoding of the  same  input  symbols.  Coded  CPhI is not  NC, since the 

encoder  only  generates a subset of the  uncoded  CPM  outputs,  and  uncoded CPM is not  NC. 

Hence,  unless the  encoder itself  is catastrophic,  the  coded  CPM will not  be  NC. 

2 CPM Schemes 

In CPM schemes, the envelope 

varies in a continuous  manner. 

j27r haiq(t - ZT,)} for nT, < t < (n  + l)T,. 
i=O 

of the RF (Radio  Frequency)  signal  is  constant  and  its  phase 

CPM  signals  are  described by 
n 

The  data {a,} are Ad-ary data symbols of duration T,, M is usually a power of 2, taken  from 

the  alphabet f l ,  f 3 .  . , &(Ad - l), h is a modulation  index  and q(t) is the phase  response 

function. CPM schemes  are  denoted by their  phase  response  function  or by its  derivative .9(t) ,  

the frequency  response  function.  Let G be  the  number of symbol  intervals over which the 

frequency  response  function is not  zero.  The  phase  response  satisfies q ( t )  = 0 for t < 0 and 

q(t) = 1/2 for t > GT,. If G = 1, the scheme is called  full response,  and when G > 1 it 

is called  partial  response.  The full  response CPM  with  rectangular  frequency  pulse is called 

CPFSK  (Continuous  Phase  Frequency  Shift  Keying).  Binary  CPFSK  with h = 1/2  is called 

bl SK  (Minimum  Shift  Keying). 

3 The  Noncoherent  Sequence  Estimation 

The  derivation of the  optimal Noncoherent  Maximum  Likelihood  Sequence  Estimator (XAILSE) 

depends  on  the  statistics of the time  varying  carrier  phase.  \\*hen  such  statistics  are unttvail- 

able,  the  derivation of the  optimal NMLSE must  start from  some  broad  assumptions.  The 

commonly  used  assumption is that  the  carrier phase is const,ant (but completely  unknown) 

during  some  observation  interval ( t ,  t + T ) .  



In the  previous  approaches,  the  observations were used independently \Ye use maximally 

overlapped  observations which make use o f  the fact that  the  carrier  phase  can  be  assurned  to 

be constant for any observation of length T .  This uses the  channel  menlory  in  a  more efficient 

way. However, for the  derivation of the  estimator  itself, we assume  that  the  observations, 

even when they  overlap in time,  are  independent,  and have independent  phases. We call  the 

resulting  sub-optimal  estimator  Independent  Overlapped  observations NMLSE (IO-NMLSE). 

Note that  the  observations  are  not  made  independent by any  mean,  they  are  only  treated  as 

such for the  derivation of the  estimator.  During  this  paper x* means  complex  conjugation 

and At means  conjugate  and  transpose of the  matrix A. 

The IO-NMLSE discriminates  between a set of possible transmitted waveforms { x i ( t ) }  

with  constant  energy  symbols by choosing m which maximizes the following metric 

where ~ ( t )  is the received waveform (both ~ ( t )  and ~ ( t )  are  complex  baseband  signal), k is 

the  observation  number, r is the  observations  spacing  (chosen  as  small as possible)  and T 

is the  observation  length.  In  the  digital  implementation, dm)( t )  is a  sequence of symbols of 

duration T’, each  denoted by xirn) ( t ) .  Let the vector Zim) of dimension D be the signal  space 

representation of xirn) ( t ) .  Then  the  metric  can  be  written as 

where L is the observation  length  in  symbols (T  = LT,), 1 is the observations  spacing in 

symbols ( T  =.IT,) and for  every symbol  interval n, I;, is a  complex  vector which assumes  the 

output of D complex  matched  filters, each for one  complex  dimension of modulation.  In  this 

paper we assume 1 = 1 (maximal  overlap). For CPhl, we can  choose  an  orthonormal  basis 

such that D is finite.  In  practice we can use the  Gram-Schmidt  orthogonalization  procrdure 

for finding the basis  functions  (for  the  simulation  program).  In  general, D 5 J I G .  

For any  code which is not  noncohererltly catastrophic, as L increases  (and  the allowed 

phase  variations  are  reduced  appropriately),  the  performance of the  IO-NMLSE  approaches 



4 A Trellis Structure for  Use in  Noncoherent CPM 

A CPM scheme  with a rational  modulation  index h, can  be  represented by a trellis  diagram. 

In a full  response  scheme, the  states  are  the  phase  states,  and  in  a  partial  response  scheme, 

a state corresponds to  the  phase  state  and G - 1 last  symbols [2]. We  can use this  trellis 

as a basis to  decoder  implementation. However! specifically  for CPM, we can  make  some 

simplifications to  reduce  the  number of states  and  to  improve  the  understanding of the  factors 

influencing the  performance of the  noncoherent  system. 

We like to  use the VA to implement  the  IO-NMLSE.  When we use the VA to  maximize 

(3),  we use q k  as  branch  metric.  The  symbols  indexed by k - i ,  i = 1, . . . , L - 1, are  taken 

from the  survivor  path,  i.e., decision  feedback is involved. This  modification of the VA is 

called  Basic  Decision  Feedback  Algorithm  (BDFA) [5]. This  algorithm is of similar  principle 

as  the  Reduced  States  Sequence  Estimator (RSSE) [32] used for IS1 channels  and  belongs to 

the class of decoders  called  per  survivor  processing [33]. 

The  BDFL4,  applied  on  the  original  trellis of a code,  is  suboptimal. We have to  construct 

a new trellis  diagram  to  apply  the  BDFA which will be  called an  “optimal  trellis”. Using this 

trellis  in the BDFA  results in optimal  operation,i.e.,  the  metric (3) is maximized. 

Moreover, the  phase  states  carry  unuseful  information for the  noncoherent  decoder, so they 

can  be  eliminated. 

Let us begin by defining a new trellis  diagram for CPhI in which the  phase  states  are 

eliminated,  but  otherwise  all  the waveforms can  be  generated  without  any  change. We  will 

call  this  trellis  the primitive noncoherent  trellis. The  primitive  trellis is the  optimal  one for 

the case of L = 1, i.e.,  symbol by symbol  noncoherent  detection.  Each  state i n  the  primitive 

noncoherent  trellis  corresponds to the  last G -  1 input  symbols { ( z , ~ - ~ !  un-2! . . . , U , - G + ~ } .  The 

G - 1 symbols  correspond to  the  memory required by the  partial  response  scheme.  Note  that, 

for a full response  scheme, the trellis  has  only one state  and ill parallel  transitions. Let sn ( t )  
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and let s',(t) be  the  same waveform as sn ( t )  but  with a zero phase  state, 

Each  branch of the  trellis is  assigned a record  with  two  information fields. The first field 

contains sk( t ) ,  and  the second field contains  the  amount of phase  rotation  induced by the 

input  symbol un-G+l, 

8, = 7rhan-G+1. (6) 

Given  a  sequence {sh( t ) ,  On}, starting at time no (which  may  be the  beginning of an observa- 

tion),  the  signal sn ( t )  can  be  derived,  up to  a constant  phase  shift q5 as 

An example of the primitive  noncoherent  trellis is  shown  in  Figure 1-b for the case of 

CPFSK  with h = 2/5 and A1 = 2. For  reference the  coherent  trellis  where  the  phase  state 

are  present is  shown  in  Figure 1-a. The  optimal noncoherent  trellis  for L > 1 must allow for 

the  additional  memory  introduced by the  overlapping.  Each  state  in  the  optimal  noncoherent 

trellis  corresponds to  the  last L - 1 + G - 1 input  symbols { u ~ - ~ ,  . , un-L-G+2}. The 

L - 1 symbols  correspond to  the  amount of overlapping  between  the  observations which  can  be 

considered as the  amount of memory,  and G' - 1 symbols  correspond to   the memory  required 

hy the partial  response.  The  assignments of the  branches, as in the  primitive  trellis, follow 

equations (5) and (6). If a shift  register is used as  an  encoder,  then  the  most  recent G - 1 

symbols,  together  with  the  current  input,  are used to choose  one of the  possible fblG waveforms 

(or  complex  vectors  representing  these  waveforms). The rcst of the  shift  register  stages arc' 
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loft, I l t l c :o t ln t l c~ t ,o t . i .  These  stages  are  only used for the  purposc of delaying  the merge o f  two 

S ( Y ~ ~ ~ P ~ I C ( Y  0 1 1  t h r .  trellis by L - 1 symbols, see an example in Figme 1-c and  Figure 1-d. During 

this  “waiting  period”  the  outputs of the two  sequences are  equal. Now the  future  symbols 

after t,he merge  have no influence on the  result of the  comparison  between  the  candidates’ 

paths, so tentative  decisions  can  be  made,  enabling  the  optimal use of  t8he VA. 

5 Computing  the Error Probability of the IO-NMLSE 
for CPM Signals 

In CPM, the  error  probability is not  independent of the  transmitted  sequence.  There is a 

way to overcome  this  problem, by using a trellis  diagram  that  represents  the  phase difference 

between  two CPM signals.  The  error  probability of a constant  energy  coded  modulation  can 

be  completely specified  by the pairwise  complex  correlations of all  possible waveforms  (which 

here  is  equivalent to  the phase  difference). This is  known for the  coherent  detection case. In 

[8] it was proved that  it  is  also true for any  arbitrary  maximum-likelihood  type  detector which 

uses a correlator  front  end. 

Since there is a linear  mapping  from  input  symbols  to  output  phases,  the  phase difference 

signal  can  be  generated  simply by feeding the difference of the  input  symbols  through  the CPM 

transmitter.  Also, we can  form  a  different  trellis  diagram which is  similar  to  the  previously 

defined trellis,  but  where  the  input  symbols a, are  replaced by difference  input  symbols 

Aun. Each  symbol a, takes  the values f l ,  f 3 ,  .,&(Ad - 1): and Aun takes  the values 

0, f 2 , & 4 , .  . . , f 2 ( M  - l) ,  i.e., 2111 - 1 values. Refer to  Figure 1-e and 1-f for an  example. 

Let the  channel  be AWGX with slowly varying  carrier  phase. For error  probability  compu- 

tation, we assume  that a specific codeword  is transmitted,  namely  the  all-0 difference  sequence, 

and find the  probability  that  another  path  on  the  trellis  attains a larger  metric. 

The value of the  metric ( 3 )  is independent of the  carrier  phase  process as long  as  the 

assumption of constant  phase over L symbols  approsinlately  holds.  Thus, we can assume 

without loss of  generality  that  the  phase is constant  everywhere  and is equal  to  zero.  This 

analysis  holds for any  arbitrary slowly varying  phase  process. 

Unfortunately.  the pairwise error  proba.bility  can  not be espressed  in a form  suitable for 
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where d m )  are  all  possible  competing  sequences, is the  length of the  error  event, b ( d " ) )  

is the  hamming weight of the  error  and K is a sufficiently large  number  such that  the residual 

contribution of the  larger  error  events  can  be  neglected. P,{d")} is the pairwise  error  prob- 

ability  between the all-0  sequence and d m ) .  The  last  term  in  the expression  corresponds to 

the  fact  that every  difference  sequence may  represent  more than  one  pair of input  sequences 

Let us position the beginning of the  error  event at L - 1, and  its  ending  point will be 

denoted by N - 1. The  computation of the pairwise  error  probability  used  in [l] involves 

matrixes  with  size D N .  For CPM, with  partial  response, D is large, so the  method becomes 

computationally  too  extensive.  Here we develop  a  method which  uses  only the values of the 

correlations  between  symbols  and  thus is independent of D. The size of the  matrixes involved 

will be  always 2 N .  We know that such  derivation is possible using the  results  in [8]. 

Let Zn be  one of the sequences d m )  and x ( t )  be its  corresponding  continuous waveform. 

Note that %, has  unit energy.  Let us assume that F, is normalized  such that F, = &gn +f in ,  

where E, = (2 log, hIEb)/No: Eb is the energy  per  bit, ;Vo is the noise spectral  density  and f in  

are  independent  complex  vectors of independent  normal  components  with  unit  variance  and 

zero mean. 
(n+l)T, (n+l)Ts 

nTs nTs 
Let an = ZLF, = J ~ ( t ) ~ * ( t ) d t  and Pn = Z I T n  = J r ( t )d t ,  where 2 is the  d.c. 

symbol ( s n ( t )  = 1 / f l  in  the  orthonormal  basis). Let 

and 



IV-L k+L-1 k+L- 1 iv-1 N - 1  N - L  
= a;aq = a;aq w(p.  q. A ; ) ,  

k=O p=k   q=k   p=o  g=o k=O 

where 
1, i f k < p , q < k + L - 1 ;  

, otherwise 

Let 

and  let A = { u p , q } ,  a N x N matrix,  then 

where Q and - p are vectors  with  components ap and pP,  0 5 p 5 N - 1. Let 

Let us define the  vector 14 of length 2N as 

and  the 2N x 2 N  matrix P as 

Then, 

Y = 2tPB. 

Let V be the covariance  matrix of u. Its  nonzero  entries  are 

= E{Zj,[F, - E(Tp)][Fp - E(FP)]+5i,) = Z;Ix, = x$, = 1, 

where I is the  identity  matrix, 

(20) 



1 
(1,-t  1)"" 

E{>(/$[, - E(T,j][F, - E ( f , , ) ] + 2 }  = x p  = - / n 
. c p  ( t )  tit = u p ,  

Ts 
p 7 ' ;  

V =  

1 
1 

$ . P +  N .  

u0 

u1 0 
0 

UIV-I 

1 
Here we have a non-central  indefinite  quadratic  form  in  normal  random  variables,  where  the 

random  variables  are  also  correlated.  There is a well known  method for diagonalization of 

such a quadratic  form [27] summarized  as follows.  Let us find a non-singular  matrix  L  such 

that  V = LtL. Since V is Hermitian,  such  decomposition  always  exists [as] and is  not  unique. 

Let us define another  random  vector  related  to  as 

The following relations  are useful to  note: L-" = Lt" a  nd  (LtL)" = L-lL-l' . The covari- 

ance  matrix of u is 

Hence, the  components of g are  uncorrelated.  Let us use (24) in (19) to  get 

Let A be the  diagonal eigenvalue matrix of' LPLt  and Q the  unitary  eigenvector  matrix If 

(27) 
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Finally, 

The pairwise  error  probability  computation  requires  the  evaluation of the  distribution of the 

indefinite  and  non-central  Hermitian  form in normal  random  variables  (30).  Its  characteristic 

function is  known and  can  be  found in [27] (note  that  here  the  random  variables  are  complex): 

1 2N-1 1 2N-1  2N-1 1 
+ - 

a=O 1 - 2Xi j w  ’ 

where pi  = E[z i] .  This  characteristic  function  should  be  inverted  in  order  to find the  distri- 

bution of Y.  The  distribution was computed by a numerical  method [l, -4pp. B] since there 

is no closed form  expression,  neither a convenient  series  expression. 

The  matrix L can be found by standard  triangular  factorization  techniques. However, for 

our particular  case we were able to  find a closed form for L (one of many  possible  solutions). 

The validity of the following  expressions  can  be  confirmed by inspection. 

0 
0 
4 4i-q-Q 
0 
0 

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

+ 1 - IIL.v-,j- 

. . .  

. . .  

. . .  

. . .  

0 )  
0 
0 
0 

1 
0 j  

(32) 
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0 

d- 
0 
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( 3 3 )  

6 Performance  Predictions 

The  degradation of the noncoherent  methods versus the  coherent  ones  comes  from two  sources. 

One is the  increase  in  the  error  probability for error  events which also  occur  in  the  coherent 

case and  the  other  source is due  to  the inclusion of additional  error  events, which cannot  occur 

in  coherent  reception. The  additional  error  events  are  those which start  in  the  transmitted 

sequence and diverge to  a sequence  with a constant  phase  shift  from  the  transmitted one.  In 

a noncoherent CPM trellis  diagram,  these  error  events  can  be  distinguished by having a total 

phase  rotation, x&,  different  from that of the  transmitted  sequence.  In  a  coherent  CPM 

trellis,  this will correspond to reaching a different  phase state, so that  there would not  be a 

merge,  and  thus no error  event. The  contribution of the  additional  error event's is lower as 

the  observation  length, L ,  grows. In  particular, when L is larger than  the  error event length, 

there  are  some  observations  that  span  the region of before and  after  the  error  event.  These 

observations will have a particularly  large  distance  and  thus low error  probability.  Error  events 

with  larger difference in  the  total  phase  rotation  tend  to have lower pairwise  error  probability 

for the  same  event  length. 

For this  reason CPM schemes  which use h near a "weak" point will suffer a  larger  degrada- 

tion  (only if this weak point  causes  poor  performance). -4 weak modulation  index, [2] means 

that a merge  can  happen  prior  to  the first inevitable  merge a t  t = (G + l)Tb. Suppose  t,hat a 

weak modulation  index h W ,  causes a reduction in the  minimum  distance. Let a and b be two 

13 



~ e q ~ l c ~ t l ~ c ~ s  o f  i npu t ,  symbols which correspontl  to two PiLthS on t , h e  c:ohcrcnt, trellis whic :h  start 

at, statj(> 0 at, time t = 0 and merges a t  time t = to 5 GT,  for h ,  = /I,,,,. Now. if  we us(: for the 

same CPM scheme h, close to h,, thrtrl at ti111c1 to the two sequences a iLn(i b will reach two 

different phase  states cj, and q&. It is clear that for 11, N h,, $, - q$, 2 0. On  the  primitive 

noncoherent  trellis, a and b correspond  to two paths  that merge a t  t o  or prior  to  that. At to 

the  total  phase  rotations of a and b are  equal  to $a and $t, respectively. Thus,  the difference 

in the  total  phase  transition for this  error  event is small,  possibly  having a large  probability 

to occur  in the  noncoherent  decoder. 

In  order to get  some  rough  approximation  on  the  required  observation  length  for different 

modulation  schemes, we introduce  the following arguments.  Suppose  that a constant  phase is 

transmitted, ~ ( t )  = 1 (usually  corresponding to  the all-0 input  to a code  or  modulator).  Let us 

have another  candidate  sequence, xI(t). Note that by letting ~ ( t )  and x l ( t )  be  phase difference 

sequences, the following  discussion  applies to  any  transmitted  sequence.  The  operation 
kr+T I / ~ ( t ) x . ( t ) d t ~  

2 

k r  

is  equivalent to  the  signal passed  through a filter  with  an  impulse  response h( t )  = x*(T - t )  

and  taking  the  squared  magnitude of the  result,  sampled  at  time t = T .  The  operation of 

equation (2) is to consider  all  possible  sampling  points,  with  some  finite  resolution T .  The 

impulse  response  in the case of the  candidate ~ ( t )  is 

h( t )  = 1, 0 5 t 5 T .  

This  corresponds  to a low-pass filter.  In  order  to have the  largest  distance  between zo(t) and 

x1 ( t )  in  one  observation  (here  distance serves as a qualitative  term  only), x l ( t )  has  to  contain 

most of its  energy  in  high frequency. Then for this  observation  the  calculation of the  metric 

of ~ l ( t )  will be  equivalent to  the energy output of a high  pass  filter.  Passing zo(t), a low 

pass  signal  through  this  filter will result  in  a low output. Hence to  get low error  probability 

performance  using  the  shortest  observations,  the  energy of :cl ( t )  should be concentrated  at as 

high  frequency  as  possible, see Example 6.1. Note  that  as  the  observation  length T decreases. 

the equivalent low pass  filter of the  observations of zo(t) broadens  and  the  same  happens  to 

the high pass properties of x I  ( t ) .  

14 



Irlstoad o f  using t h e  conc:ept, o f  filtering, wc c ~ ~ n  consitler the correlation brtweer~ the  signals 

ovcr i 1 . n  observation. For a, o m  obscw-ation  noncoheront  tlecision, the corrc3lation determines 

the  error  probability.  Both views are  mathematically  equivalent. 

The high pass property of the  events is indirectly  related  to  the  bandwidth  occupancy 

and  the  spectral  properties of the scheme as a whole. As the  scheme  becomes  more  band- 

width efficient] larger  observations  (measured in input  bits)  are  required  to  achieve  good  error 

performance.  This is true for the coded PSK schemes and also  for the CPM (Continuous 

Phase  Modulation)  schemes.  Take for example  GMSK  (Gaussian  Minimum  Shift  Keying) 

[26].  GMSK with  parameter BT = 00 is equal to MSK (Minimum  shift  keying).  GMSK  im- 

proves its  spectral  properties  as BT decreases. With BT = 0.25  it  has  much lower sidelobes 

than MSK. Correspondingly, GMSK with  parameter BT = 0.25  requires L = 10 to  be 0.5 dB 

close to coherent.  With BT = 0.5, L = 4 is required,  whereas  in  MSK  only L = 3 is required 

(see Figures 5-8). 

Additional  arguments why bandwidth efficient schemes  requires  longer  observations  are 

found  in [l] and [2]. 

Example 6.1 Let  us  have  a code with  the  following  three  codewords (in one  complex  dimen- 

sion),  transmitted  over  the AWGN channel: 

x(O) = {. . . , 1,1,1,1,. . .}, 

X ( l )  = {. . . , 1,1, j ,  j ,  1,1, . . .}, 

and 

x(2) = {. . . , 1, l , j ,  - j ,  1,1, .  . .}. 

Let x(') be the  transmitted  codeword.  has  more high energy  content  than x(1). Both x(1) 

and x(?) have  the same  probobility to be detected  instead of the t rue  message  when  coherent 

decoding is used. Hwwever. ,when noncoherent clecodir~g is used. ' u ' e  have found  that for x(') we 

need L = 7 for  getting  close  (luithin 0.5 dB)  to  coherent  error  probability but f o r  x(2) we need 

0711y L = 2! 
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7 Coded CPM 

It, is possiblo t o  ~ncot ic  thc  input ( h t a  prior to feeding it to  the CPhI nlodulator  and achieve 

a signitic*ant~ coding gain. Somc good convolrlt,ional encoders  for CPhI (coherent  detection) 

were found  using  a  systematic  search  [9]-[ll]. 

Evaluating  the  performance of binary  encoded  CPM is more  difficult  than  uncoded  CPM 

since it is not  possible to use the  symbol-difference  trellis  and  assume the all-0  sequence  is 

transmitted.  The  encoder is implemented over GF(2)  and  not over the real field as the  input 

symbols of the CPM modulator. It may  be  the  subject of future  research  to  find  an  equivalent 

method  to  the symbol-difference trellis for coded  CPM.  Evaluating  the  error  probability for 

coded CPM  can be  done by using  encoder-decoder  pair-states  trellis (see  for example [30]) in 

conjunction  with  the  analysis of Section 5. 

We observed  previously for the  coded PSK case, that  different  codes,  which  have the 

same  coherent  performance, suffer different amounts of degradation  in  noncoherent  decoding. 

Since we have  not  performed a systematic  search for the  best  code  for  noncoherent CPM, 

we have to  rely on  good  codes for the  coherent  decoding  and  hope  that  their  degradation  in 

noncoherent  decoding  is  small even for a short  observation. Of course we can  always  get close 

to  the  coherent  performance if a  large  observation is used, and for this  case  the  codes  best for 

coherent  decoding will be  the  best for noncoherent. Specifically, the  code which we evaluate 

here  suffers low degradation, hence probably  it is close or  equal to  the  best  noncoherent code. 

The  encoder for this  code is  shown in  Figure 2, and  its  equivalent  for  simulation is  shown  in 

Figure 3, and  the equivalent  encoder for noncoherent  decoding, L = 3 (for example)? is  shown 

in Figure 4. 

8 The Application of Suboptimal  Decoding  Algorithms 
to CPM 

The  algorithms  described in [5] are  applicable  to  uncoded  or  coded CPM. The BDFA has been 

rtwntioned  in Section 4. Wheu  applied  on  non-optinlal  trellis,  there is an increase  in  the  prob- 

ability of error  events  and also error  propagation.  The hIodified  Decision  Feedback -Algorithm 



is ;L  similar  ;~lgorit,hnl, w h k h  tends  to reduce the  error  propagation.  The  Estimated  Future 

Doc.isio~l F('(!(lt>;l(.l< .4lgorithrrt (EFDF.4) is a more  sophisticated algoritjhrrl wit11 con1ple;uity 

4-  .5 times  larger  than  the BDFA and  more  memory  requirements,  but  can  get very close to 

optinlal  performance  and is summarized briefly as follows. The  algorithm uses a novel concept 

called  "estimated  future"  to  improve  the decision  process. A block  of samples of the  input 

signal is saved  in  memory.  On  this block two  passes are  made:  backward  process (BP) and 

forward  process (FP). In  the BP, MDFA is  performed  backwards, starting  from  the  end of the 

block. The BP has  to converge  from the  initial  conditions  at  the  end of the block, in which 

no  particular  state is  used as a beginning  state.  After  the  backward  process  ends, we have 

the  survivor  paths  belonging  to each state at each time  in  the  trellis  within  the block. These 

paths  are  used as estimated  future  paths,  and  are  considered in the FP for better  reliability 

in the decisions. 

Some  points  are  worth  noting  when  attempting  to  apply  these  algorithms  to CPM. All 

these  algorithms  can  be  applied  on  the  primitive  trellis. For CPFSK schemes,  using  only 

a one state  trellis  leads  to  poor  performance. However, for any L,  we have  found that  the 

performance was  significantly  improved  when we used the trellis  optimal for L = 2 ( M  states). 

For the  partial  response schemes (2RC and 3RC, i.e.,  raised cosine pulse  shape  spanning 2 

or 3 symbols  respectively, were tested),  it is  sufficient to use the  primitive  trellis  to  get  good 

results.  This  means  that for noncoherent  decoding, the  complexity for the 2RC scheme is 

about  equal  to  that of CPFSK. In  some  cases,  the  number of states used  in the  suboptimal 

noncoherent  decoder  is lower than  that of the coherent  one  due to  the removal of the phase 

states. 

For all the CPM schemes we have tested,  the  error  propagation was minor  and  the  backward 

convergence  was extremely  rapid  (when a L = 2 trellis is used for CPFSK and  primitive  trellis 

is used  for partial  response).  The  error  propagation is relatively low also for coded CPLI. 

Thus.  the EFDF-4 has negligible degradation when applied to CPhI.  
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9 Results and Discussion 

111 this  section we present  analytic  performance  evaluation ancl sirnulation  results  for  various 

os;mplr:s. In the  simulations we included  a very simplified,  but  useful:  model  for  the  phase 

variations.  In  this  model  the  phase noise is a  first  order VIarkov process  with  Gaussian  tran- 

sition  probability  distribution.  This  corresponds  to  frequency  spectrum  that  behave  as l/fz. 

In practice  this  means  that  the  phase  variation  between successive symbols  is  independent 

normal  random  variable,  with zero mean  and specified  variance 6’. 

The first  example  is MSK modulation, see Figure 5 .  Analytic  results  are  given,  supple- 

mented by simulation  points for L = 5 (6 = 0,5,1Oo/sym).  The  case 6 = 0 can  be used 

to confirm the analysis.  The  EFDFA  can  be  considered  optimal  in the  CPM case,  and  the 

simpler  algorithm  BDFA’s  performance is  also  shown. The  small  difference  between  the  sim- 

ulation  points  and  the  analysis at low SNR is  due to the use of the union  bound  technique 

in the  analysis.  The  phase noise is “slowly varying”  only  in the  mean.  Fast  changes  happen 

occasionally and  cause  errors.  These  errors  can  be  seen  only  in  high SNR when the  error 

probability  due  to  thermal noise  is small.  This  phenomena is not  unique t o  our  decoder;  it 

will happen  in  any  detection  scheme. 

In  Figures 6 and 7, we show the  performance of GMSK.  With BT = 00, GMSK becomes 

MSK. As BT becomes  lower, the side-lobes  become smaller,  and  also, t o  a lesser extent, 

the  spectrum  become  narrower. We recognize by comparing  Figure 5, 6 and 7 that as the 

spectral  properties  improve,  the  degradation in the  noncoherent  decoding is  higher for the 

same  observation  length.  The  reason,  as  explained  intuitively in Section 6, is that  the high 

frequency  components  are  important  to  the  noncoherent  decoder. 

In  Figure 8 we show the  performance of a partial  response  scheme.  Here we use 4-level 

2RC  with h = 1/3.  This scheme  is  chosen to  have the  same power efficiency as MSK but’ have 

much better  bandwidth  eficiency  (almost twice the  throughput for 99% power bandwidth). 

In Figure 9 we use a 4-level CPFSK  with h, = 2/5. This  scheme is chosen  such that  the 

bandwidth  requirements  are close to  that  of MSK,  but  the power efficiency is  much  better. 

Comparing  Figures 9 and 10, we can see that as the  modulation  index h approaches a 

weak point h = 0.5, the  degradation of the  noncoherent  decoder  increases, as expected. Thc 
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shorter  observathls, L = 2, L = 3 ,  as expected, do [lot . L f w l "  thc c'fkct o f  being  ncar  a weak 

h point  (see  Section 6) .  Note that  dthough  the degraclatiorl is higher,  the  performance of 

the h = 4/9 scheme is better  than  the h = 2/5 scheme.  Since,  unlike the  coherent  case,  the 

number of phase  states  does  not affect the decoder  complexity, 11 = 4/9 should  be chosen 

among  the two. 

A  coded CPM scheme is evaluated by simulations  only in Figure 11. The coherent  points 

were simulated as well. They  match  with  the  results in [9] which  were computed  using  union 

bound  techniques. We see degradation of about 0.4 dB when L = 10 is  used.  Compared 

to  the  coded  PSK  schemes,  considering the  bandwidth efficiency which tend  to increase to 

observation  length  needed,  this  is a good  result. 

The  simulation  points were produced  using  the  EFDFA  or  the BDF.4. For the  simulation 

points  shown  in  Figure 8, 4 states were used in  the  EFDFA,  compared  to 41° = 1048576 states 

required  for the  optimal  algorithm! For the coded CPM, 8 states were  used in  the  EFDFA. 

One  extra  unconnected  stage  was  added to reduce  the  degradation of the MDFA. BDFA  can 

be  applied successfully to  uncoded CPM as shown  in the  examples. However,  when applied 

to coded CPM,  large  error  propagation  bursts  degrade  its  bit  error  probability significantly. 

This  limit  its  application  to  short  observations only. The  degradation of the BDFA  does  not 

vanish even when the  number of states is raised to 32. 

10 conclusion 

We have shown that  the noncoherent  decoding  technique of [l] and  its  suboptimal  implemen- 

tation  algorithms [5] are very well suited for noncoherent  decoding of CPM schemes.  Using 

these  algorithms we can use observation  lengths of few symbols  and  achieve less than 0.5dB 

degradation  relative  to  coherent  performance  with  a  relatively low complexity receiver. Not 

only  the  noncoherent  decoder  handles much  higher  values of phase noise: the  acquisition, 

tracking,  loop  design  and  phase  ambiguity resolving circuitry  are  saved  and  also  degradation 

from  imperfect  phase  estimation is eliminated. 
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Figure 1-b: The primitive  noncoherent  trellis of h = 2/5 binary CPFSE;. 
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Figure  I-c:  The  optimal  noncoherent  encoder of h = 2/5 binary  CPFSK, L = 2. This  encoder 
is not used for encoding,  but  as a model to build the  decoder  trellis  shown  in  Fig. 8.ld. 
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Figure 1-d: The  optimal  noncoherent  trellis of h = 2/5 binary  CPFSK, L = 2. 
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Figure 1-f: The symbol-difference  optimal  noncoherent  trellis of h = 2/5 binary  CPFSK, 
L = 2. 
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Figure 2: A coded CPFSK encoder!  coherent  detection. 
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Figure 3: Equivalent  encoder of the  system of Figure 2, coherent  detection. 

Figure 4: Equivalent  encoder of the  system of Figure 2. noncoherent  detection  with L = 3 
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Figure 5: Noncoherent  decoding  performance of MSK. 
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Figure 6: Noncoherent  decoding  performance of GUSK, BT = 0.5. Simulation  points  with 
L = 3, EFDFA, S = 0. 
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Figure 7: Noncoherent  decoding  performance of GMSK, BT = 0.25. Simulation  points  with 
L = 3, EFDFA, 6 = 0. 
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Figure 8: Noncoherent  decoding  performance of 2RC! h = 1/3, 4-level CPM. 
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Figure 9: Noncoherent  decoding  performance of lREC  (CPFSK), h = 2/5, 4-level CPM. 
Simulation  points  with L = 5: EFDFA, 6 = 0. 
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Figure 10: Noncoherent  decoding  performance of lREC (CPFSK): h = 4/9, 4level CPM. 
Simulation  points  with L = 5, EFDFA, 6 = 0. 
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Figure 11: Simulation  results of coded CPM with  coherent  and  noncoherent  detection. A 4 
states  binary  rate  1/2  code is used with h = 1/4 4-level CPFSK. The encoder is  shown  in 
Figure 2. Unless marked differently, simulation  with EFDFA4, S = 0. 


